DEPENDENCY OF THE RATIO OF THE DIASTEREOMERS, L- AND D-t-LEUCYL-L-VALINE, ON THE COUPLING METHODS

Toshifumi MIYAZAWA, Katsumi TAKASHIMA, Takashi YAMADA, Shigeru KUWATA, and Hiroshi WATANABE

Laboratory of Chemistry, Faculty of Science, Konan University, Okamoto, Higashinada-ku, Kobe 658

In the condensation of N-pivaloyl- or N-benzyloxycarbonyl-DL-t-leucine with methyl L-valinate, the ratio of the resulting diastereomers varied depending upon the coupling method.

In the course of our studies on the asymmetric synthesis of t-leucyl peptides, 1) samples of methyl N-pivaloyl-t-leucyl-L-valinate (Piv-Tle-L-Val-OMe: Tle = DL, D and L) were necessary as standards for the gas chromatographic analysis. 2) We attempted to prepare the samples by condensing Z-Tle *) (DL, D and L) with L-Val-OMe by the DCC or the DCC-HOBt method and replacing Z with Piv as shown in the following scheme.

The condensation of Z-DL-Tle with L-Val-OMe, however, gave a product rich in the L-L-diastereomer, particularly by the DCC-HOBt method.

Apparently this phenomenon reflects kinetic difference between the reaction of Z-L-Tle with L-Val-OMe and that of Z-D-Tle with L-Val-OMe. Stimulated by this fact we further examined the diastereomer ratios in this coupling reaction by various methods commonly used. 3

Table 1 shows the diastereomer ratios in the products obtained by the coupling of Piv-DL-Tle with L-Val-OMe in the molar ratio of 2:1 at room temperature for ea. 24 h. By the DCC method the D-L-isomer was produced preferentially, but the use of such additives as HOBt, HOSu, and HONb⁴) brought about a reverse ratio. Almost the same results were obtained when the active esters of these additives were used. On the other hand by the DPPA method the D-L-isomer was produced in larger excess. 5)

The condensation of Z-DL-Tle with L-Val-OMe (molar ratio = 2:1) was carried out under the same conditions (Table 2). In this case even the condensation by DCC alone produced a mixture rich in the L-L-diastereomer, and the additives increased the L-L-diastereomer content greatly. Especially marked was the result of the DCC-HONb method, the condensation product containing ea. 80% of the L-L-diastereomer.

This interesting phenomenon, that the ratio of the L-L- and D-L-diastereomers varies strikingly with the coupling method, may be a special case, and seems to be connected with the bulkiness of both the acid and the amine components. Červinka et al. have also observed a similar phenomenon that in the coupling reaction of Z-DL-amino acids with L-amino acid esters in the molar ratio of 3:2 by the DCC method at

room temperature D-L-diastereomers are preferentially formed, though no reference is made to the other coupling methods.

This work was supported by a Grant-in-Aid for Scientific Research (No. 174177) from the Ministry of Education.

Table 1. Condensation of Piv-DL-Tle with L-Val-OMe (2:1)

Method ^{a)}	Yield (%)d)	Ratio of	Diastereome
ricenou	ileiu (%)	L-L	D-L

Method ^{a)}	Yield (%) ^{d)}	Ratio of Diastereomers ^{e)}	
riechod		L-L	D-L
DCC-HONb	70	69	31
Active ester (-ONb)	83	68	32
DCC-HOSu	58	60	40
Active ester (-OBt)	78	60	40
Active ester (-OSu)	45	59	41
DCC-HOBt	88	58	42
MA (ClCOOEt) ^{b)}	_	46	54
MA (ClCOOBu $-i$) ^{b)}	-	45	55
CDI	-	45	55
Chloride	-	44	56
DCC	89	43	57
Active ester (-ONp)	87	42	58
DPPA C)	-	31	69

a) Unless otherwise noted THF was used as solvent. b) Solvent: THF-CHCl3

Table 2 Condensation of Z-DL-Tle with L-Val-OMe (2:1)

Method ^{a)}	Yield (%) ^{b)}	Ratio of Diastereomers ^{b)}	
		L-L	D-L
DCC-HONb	52	81	19
DCC-HOBt	55	73	27
DCC-HOSu	79 ^{C)}	65	35
DCC	79	58	42

a) Solvent: THF b) Estimated after converting the products into Piv-Tle-L-Val-OMe (see the scheme). c) The yield is overestimated due to contamination.

References and Notes

- 1) T.Miyazawa, K.Takashima, T.Yamada, S.Kuwata, and H.Watanabe, Abstr.No.3R44, 37th National Meeting of the Chemical Society of Japan, Yokohama, April 1978.
- E.Frauendorfer, W.Steglich, and F.Weygand, Chem.Ber., <u>106</u>, 1019 (1973).
 M.Bodanszky, Y.S.Klausner, and M.A.Ondetti, "Peptide Synthesis" 2nd ed., John Wiley & Sons, New York (1976); E.Wünsch, ed., "Synthese von Peptiden", Part II, in Houben-Weyl, "Methoden der Organischen Chemie" Vol.15/2, 4th ed., Thieme-Verlag, Stuttgart (1974); N.Izumiya, T.Kato, M.Ohno, and H.Aoyagi, "Pepuchido Gosei", Maruzen, Tokyo (1975), and others.
- 4) M.Fujino, S.Kobayashi, M.Obayashi, T.Fukuda, S.Shinagawa, and O.Nishimura, Chem. Pharm.Bull., 22, 1857 (1974).
 5) A similar result was obtained by the azide method, though the yield was very poor.

- 6) O.Červinka and J.Budilová, Collect.Czech.Chem.Commun., 32, 2383 (1967).

 *) Abbreviations: DCC, dicyclohexylcarbodiimide; Z, benzyloxycarbonyl; HOBt, 1-hydroxybenzotriazole; HOSu, N-hydroxysuccinimide; HONb, N-hydroxy-5-norbornene-endo-2,3-dicarboximide; MA, mixed anhydride; CDI, carbonyldiimidazole; ONp, p-nitrophenyl ester; DPPA, diphenylphosphorylazide.

c) Solvent: DMF d) The yields, after isolation by a preparative TLC, are overestimated due to contamination. e) Estimated by a Hitachi 063 gas chromatograph: column, 0.5% FFAP on Chromosorb G (ϕ 3mm \times 2m); column temp, 150°C; carrier gas, N₂ 11 ml/min.